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The system of equations of the nonlinear plate theory contains an intrinsic 
small parameter ca (the relative plate thinness). In the case when only 
the tensile stresses are developed in the corresponding membrane (c = O),it 
has been shown by asymptotic methods that for small c there exists a state 
of equilibrium In which the plate behaves llke a membrane everywhere except 
In the narrow region near the boundary where the edge effect takes place. A 
method of obtaining this solution has been constructed at the same time. The 
general results obtained are then particularized for the cases of an axisym- 
metrical plate and a plate of arbitrary shape subjected to tensile stresses 
on the contour. 

1. Qa tha formlrtlon of the probloa. We consider a system of nonlinear 

differential equations of the theory of flexible plates [l] due to K&man 

A2F + ‘I2 [w, WI = 0, je2A2w - [w, Fl - q = 0 (1.1) 

I[w, Fl = wxxF,, + wd'rx - 2wq,Fx, (4.2) 
Eha 

E2 = 12 (1 _ @) 9 4 = 91 q o<v<o.s) (1.3) 

Here F Is the stress function, W is the deflection of points of the 

middle surface. The quantity ca characterizes the relative plate thinness, 

h Is the plate thickness, E Is 

p,(r,p) is the magnitude of the 

ma1 to the plate surface. It is 

smooth function. 

Young's modulus and v is Poisson's ratio, 

external load which is acting along the nor- 

assumed that p,(x,g) Is a sufficiently 

Let a plate occupy a bounded region D with a sufficiently smooth con- 

tour P . Moreover, It Is assumed that on the contour* 

l The case of a rigidly built-in plate has been chosen merely for the sake 
of definiteness: what follows can be easily applied to some other com- 
mon cases, e.g. hinge supports. 
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Here n and T are the normal and tangential directions on the bounary, 

and FT+ (A) and F,,r (A) are, respectively, the normal and tangential com- 

ponents of the external traction applied to the plate contour. It is assumed 

that the system of forces applied to the contour of the plate satisfies the 

conditions of equilibrium and compatibility. Then the existence of the so- 

:ution of the problem (1.1) to (1.5) follows from the results of [2 and 31. 

Along with the problem (1.1) to (1.5) we will consider a ndegeneraten 

problem (on the equilibrium of a membrane) 

Here as well as everywhere henceforth the indices following a comma desi- 

gnate differentiation with respect to corresponding variables. 

Consider the problem of the asymtotic behavior of the solutions of (1.1) 

to (1.5) when c - 0 . In the case of a circular-symmetrically loaded plate 

with vari0I.E support conditinns, aSymPt;otic rePmWItati.ons were constructed 

for a symmetric solution in [4 to 71, and it was established that the solu- 

tion Is close to the solution of the degenerate problem (F = 0) everywhere. 

except In the narrow vicinity of the boundary, where the edge effect takes 

place. In [8] Fife has investigated the asymptotic expansion of the solution 

of (1.1) to (1.5) for the case of a rigidly built-in plate of arbitrary shape, 

subjected to uniform normal extension on the contour 

I*.,: f‘ .- CT ::I r*o11!4., i*‘,i; ,' -- (1 (1.8) 

In the same way as in the case of radial s~etry, it was established that 

for E - 0 the solution of the problem (1.1) to (i.4) and (1.8) c0nverges 

uniformly to the solution of the "degenerate" problem everywhere except in 

the close vicinity of the boundary. The quantity f: (pJ-":> is here assumed 

to be sufficiently small, which permits the use of the method of sUCCeSSiVe 

ap~roxima~ions,~ogether with the existence of solutions of the two problems, 

to *rove their uniqueness. On the other hand, it is well known [9 to II] 

that a loaded plate or a shell has, generally speaking, more than one form 

of equilibrium. 

Hence, the question naturally arises which of the solutions of problem 

(1.1) to (1.5) ere llcloseW, in the above sense, to the solutions of problem 

(1.6) and (1.71, when E - 0 . 

In the membrane only the tensile stresses are developed *. Therefore, 

t Tn the l~mi~re such membranes are refW???ci toas nonmet%Uic (see [ 20 and 2111. 
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the solutions of problem (1.6) and (1.7) which are mechanically meaningful 

are those which at every point of the region D satisfy conditions 

Il’nss -= a,>O, Fo,?,y = ux>o, Fo,,, = - z, cr.gu -T*;> 0 (1.9) 

In what follows such solutions are referred to as positive. It is natural 

to look for solutions of problem (1.1) to (1.5) which are close to the posi- 

tive solutions of problem (1.6) and (1.7). We will consider solutions of 

problem (1.1) to (1.5) for which a condition of the form (1.9) is satisfied, 

and will refer to them as membrane solutions. 

It has been shown In the present paper, that if the positive solution of 
problem (1.6) and (1.7) exists, then the membrane solution for the plate 
also exists. It L.s unique (Theorem 3.2); asymptotic expansions are con- 
structed for It, and estimates of errors are established for F - G (Thtc:.( 1,' 
3.3). Namely, when E - 0 the membrane solutions become positive solution,: 
everywhere, except in the close vicinity of the boundary where the edge ef- 
fect takes place. The proof of the above facts is furnished by constructing: 
the asymptotic expansions of the solution of problem (1.1) to (1.5), analo- 
gous to those obtained In [6 and 73 for the case of radial symmetry (Section 
2), and by applying the Newton's method which was developed for the operator' 
equations by Kantorovlch [12]. 

It becomes obvious from what has been said above, that the existence of 
the positive solution for a membrane Is an important factor. Such existence 
can be established In a number of cases. For instance, It exists (a)in the 
case of a symmetric plate (Theorems 4.1 and 4.2) and shells of revolction 

F 
133, (b) in the case (1.6) and (1.8) and in analogous more general ones 
Theorems 4.3 to 4.5). In the general case of problem (1.6) and (l.'[) there 
are no positive solutions. These questions are dlscussed in Section 4. 

Let us point out that, unlike In [8], here the argumentation of the asymp- 
totic expansions Is not related to the uniqueness of solution (corollaries 
of Theorem 4.1). Moreover, In Section 2 we consider a case In which the edge 
effect Is described by boundary layers of a fractional order. Thls is the 
case of a rigidly built-in plate whose contour is free of stresses. In the 
general case, when problem (1.6) and (1.7) does not have the positive solution, 
the degeneration is of a more complicated character. One of the examples of 
this nature Is considered by Fredrlchs and Stoker [14]. 

All arguments and proofs given below can be easily transferred to the case 
of shells of constant curvatures. 

2. Conrtruotion of the srymptotio ~%pU%OiOn. Let us introduce the fol- 

lowing notation. Let the vector \' z (F,(P) be the solution, and P, [\;I 

be tQe left-hand part of the system ( 1.1). For the solution of (1.1) we 

construct asymptotic expansions of the form 

,< z , , s =I, s--I, SE,, 

The functions F,, WI are obtained by means of the first iteration pr'oce:.- 

c 151 . Namely, we set 

VIL - (P. ZP), j.,l _ 5 @Fs, u'" zz 4 2 ES& (2.2) 
s-0 s-0 

and l,equlre that 

P, [V,] = 0 (&“‘I) (2.3) 
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Setting the coefficients at ~O,c~,...,cn In (2.3) equal to zero we obtain 

the system of equations (1.6) and (1.7) which yields & and a, and for the 

determination of F,, u), we obtain the system 

A2F, + l/z 2 [wk, wml = 0 A2ws_2 - 2 [FIG, &,I = 0 (2.4) 
k+m=s ktn- s 

(w-1 = 0, ,s=l, 2 )...( r&+2) 

with boundary conditions 

W,jl' = 0, F,,,, jr = B,(l), F,,,, Ir = BJ2) (s = 0,1,. .., n +2) (2.5) 

Here B,ci) (i = 1, 2) are so far &own functions. The functions F , 
2’ (8 = O,l,... ) do not satisfy all the boundary conditions (1.4)and (1.5) 
and, consequently, the difference V -V, is not small near the boundary r. 

The inconsistencies which arise in the fuiflllment of the boundary conditions 

(1.4) and (1.5) are compensated by functions of the boundary-layer type h: 

and g.', which are determined by means of the second iteratfon process [15]. 

Namely, we look for the difference V - V, in the form 

F - F” = ; e”‘hm, w-uJn= Em&n (2.6) 
m=o m=o 

In order to determine the functions h,, Q,, it Is necessary to change 

from the coordinates x, y to the local coordinates. Let us Introduce a 

coordinate system P, cp in the vicinity of the boundary l-' ; namely, we 

construct a system of normals, i.e. vectors AR of length n > 0, drawn 

from points A of the arc r Into the domain D , so that the vector m 

forms a right angle with the tangent to the arc r at point A . If n is 

sufficiently small the normals will not Intersect each other. The coordinate 

P of the point R on the normal AR Is equal to the distance AN , and cp 

Is the arc length 0.4 , where 0 is some point of the arc r , for which 
cp = 0. 

We substitute (2.6) into (l.l), bearing in mind (2.3), and in the resulting 

expression we pass to the local coordinates 

5 Esn2hs + ‘I2 i E” [W,,,, gkl + ‘12 i Es [grn> gk] = o ten+‘) 
s=o ktm=s k+m=s 

71 

z. et2 A% - i e- [Fm , 
n 71. 

gkl - 2 E8 [&I, hkl - 2 ES I&, h,,l = 
ktm=s k+m=s k+m=s 

:= 0 (p+1) (2.7) 

liere 

g.YtTh_ = gPOp.r.ipXk + g% (‘Pxipxk $- qx#.ri ) -I- g~cp,irp,, f g&Xi,, f g~:‘p(pSi.<~ 

(i, k = 1, 2, z1 = I, zp = y) 

In the new coordinate system the operator A' will be of the same order, 

but will have variable coefficients. Expanding these coefficients into 

Taylor series with respect to P in the vicinity of P = 0 and making the 
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substitution p = ct , we obtain 
N 

~2~ = 8-4 (a$ + 2 &‘Ri ti + eN+l RN+~u) 
i=l 

Here Ri (i < N) and RN+~ are linear differential operators, whose 

respective coefficients are of the form 

where d,(p,m) are functions of c, m Independent of E . Furthermore, 

let N 

Fm = x Fmlp’, wm = 2 wrn1p’ (2.8) 
l=o; 1=0 

be the corresponding expansions of the functions F. and III. into Taylor 

series in the vicinity of p = 0 . Now, in (2.7) and (2.8) we set p =ct, 

we substitute (2.8) Into (2.7) and set the coefficients at the same powers 

of, c equal to zero. For the determination of h,, 0, we obtain systems 

of linear differential equations of the fourth order with coefficients de- 

pending on 'p . The boundary conditions for the functions h,, 9, when 

t = 0 are determined by the values of the difference V - V, on the boundary 

r for the corresponding powers of c', 

Rs Lo = 0, 
% I awe 
7 p=~ = - an r 

(s=O,i, . . .) 

and when t = m , from the condition of existence of the boundary 

~(t~m=~~rim=h.lt~=O (s=O, 1.2,. ..) 

Then from (2.7) for h, and hl we obtain 

phi 
- = 0, 
ar 

(i =O. 1) 

Hence It follows that 
h, = h, E 0 

(2.9) 

layer, i.e. 

(2.10) 

(2.11) 

(2.12) 

Now we determine the functionsB2) (cp),by setting the coefficients at 

E' (s = 0, 1, . . . . IL + 2) equal to zero in Expressions 

nia n+B 

x e* (BP) +h,,,) Ipzo = T (cp), 2 8’ (BP + &x) Ip=o = S (cp) 

In pertlcular, from (2.12) we find that&(l) = T (cp),B,@) = S (cp). From 
here actually follows the correctness of choice of the boundary condition 

for the positive solution of problem (1.6) and (1.7). 

Setting the coefficient at cma equal to zero in the relation which is 

obtained from the second expression (2.7) in conjunction with (2.9) to (2.12) 
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leads to Equation 

(2.13) 

g&o = 0, 

Here a is a function depending 

relation 

on the coordinate rp and defined by the 

In the case when Z"(q) > 0 , from (2.13) and (2.14) we obtain 

(2.15) 

i.e. a&+ is a function of the boundary-layer type of order zero [15]. 

From (2.15) we find 

(2.1.6) 

Furthermore, from the first expression (2.7) in exactly the same way we 

obtain the equation for h, 

Where g, is determined in (2.16). Integrating we find 

Here C, (t>rp) and c,(t,v) are polynomials of the second order with 

respect to t . We determine the functions Q,(s= l,..., n) from equations 

which have the fsirm of (2.13) and (2.14), but are nonhomogeneous, and the 

functions h8 are found by means of term by term Integration of expressions 

of the form p,(t,(p) exp (- k(rp)t), where k(cp) > 0 , and P,(t,cp) is a 
polynomial In t of order not higher than s . Using the method of mathe- 

matical induction in a manner similar to that of [15], it can be easily 

shown that h, and g. are the functions of the boundary-layer type ofinteg- 

gral order. Finally, let us determine the functions h,' and g,O (,- = 1, 

2,... ) in Formulas (2.1). To that end we set 

//,(1 1 $ (p / 6) IL,, &' ~= + (p / b) g, (2.19) 

Here $(q) is the smoothing-out function (equal to 1 fur I-, < I/., and to 

0 for '1 > Z/J. 

Thus the process of constructing an aSymptOtiC expansion is reduced to 

the following. We find the positive solution _F,, w0 of problem (1.6) and 

(1.7) and from (2.13) and (2.14) we determine g, . Then from (2.4) we 

successively find F,, W, (s = 1,2,...), and from the nonhomogeneous equa- 

tions of the form (2.13) and (2.14) we find g, (These equations have not 
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been written down because they are very cumbersome) 

Let us now construct the asymptotic expansion for the case when 

T(/I) = S(A) = 0, 

i.e. when the edge of the plate Is free of stresses. As is well kno:~n, in 

that case the boundary conditions for the function .r can bg :,eaucid t, the 

form 
F (A) = F, (A) = 0 (A Al’) (2.20) 

Since T(A ) = 0 Equations (2.13) and (2.14) are incompatible. Thic :l:eanc 

that the boundary layers of integer order with respect to 5 are unsuitatl~. 

for the description of the edge effect phenomena, and therefore terms cf 

higher order with respect to E must be taken into account. Let u:: aiTain i 

consider Equation (2.7) and let us write down the followin& expresslon in 

local coordinates in more detail 

Here under L we include terms which contain lower-order derivative., cf 

the function gL with respect to p . PUrtkLermOre, ‘We set p = Ep/3 anti iI1 

(2.7) and (2.21) we make a substitution p’ = Ilt . Exactly as in the i:snt- 

ral case, we find that h, = hl = 0 and B,ci) = BIti) = 0 (i = 1, 2). Since 

B,ci) = 0 we deduce from (2.4) and (2.5) that for s = 1 F, = w1 z 0. 

Now, In order to determine g, we collect the terms at I.-‘, and 6earini; ill 

mind that F, = mI = 0 everywhere In D , and 

F 00,q = F 00,w = Foo,pp = Foe,,,, = Foo,P = 0 
on the contour r we obtain 

a4go ~- 
at* altFo,,, ‘2 =o (2.22) 

Here 

a1 = (PaPu2 + PullPx2 - 2Px,,P&,) I r 

If F,,wal = Z(T) > 0, then the solution of problem (2.22) and (2.23) can 

be obtained in the form 

agO 
- $ woo (0, rp) \ -4, (- h> dh, aw0 -= 

at, woo = &- r 
(2.24) 

Here [16] 

A, (- tJ = 5 cos (z” + tlq dz, t, = (31 ((P))‘~ (0 0) 
0 
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The asymptotic representation of A,(- t) for 

form 

A, (- t) = I/, VW (3t)+ exp t- z(v#*] (1 + 0 (t-Y), t > 0 (2.25) 

large values OS t has the 

Let us note that in the case of a circular, symmetrlcally loaded, rigidly 
built-in plate (the contour is free of stresses) it is easy to show that 

I(m) > 0 c71. Indeed, In that c&se p = 1 -r,$=i+ys<%and 

01 =- 1. It remains to show that J'cc,,,,, < 0. That follows directly from 

Formula(4.10)for T=O and r=l. 

We have F 1 1 cpa@)a &<O 
OO,PQ, = -T 

s 222 [rpffl = OJ 

0 

ft has been established in this Section, that If (1.9) is fulfilled on 
the contour (which in turn implies the inequality F (Aj>O (A E r)h than 
the asymptotic expansions of solution (2.1) can be'?ormally constructed. 
Below it will be shown that the existence of the positive solution is the 
suSflclant condition for the existence of the membrane solution, for which 
the asymptotic expansions are valid. At the same time the estimates of 
errors for E - 0 will be established. 

3. Juot%flaatlon of the aaJq)totio e%$&mion8. Ibrlrtonoo of the mom- 

bran. rolutlonr. ‘Let us Introduce function spaces. 

1. The space L&I), composed of functions summable with the power p> 1 
and with the norm 

ItfIlL, =(jIflPd3dy)'l" (3.1) 

If the vector-function V 5 (F,w}, I s considered, we will assume that 

F, w E L, (D) if each of its components VEL,(D), and we will define 

the norm of V by the relation 

I/ v /k-m2 = li F E + II uf l/L* (3.2) 

2. The space x of functions 1 which satisfy tine boundary conditions 

(1.4) and which possess In the domain D the generalized derivatives of the 

order 1 = 4 which belong to me with the norm 

(3.3) 

If the vector-function V s (F,w) is such that its components~,W E 13, 

then we will say that VEE= and we will associate V E H with the norm 

11 v 11 "H = II F II : + II w II 5 (3.4) 

3. The space i?@ of functions J' continuously differentiable m times 

right up to the contour. The norm In C@) is defined by Formula 

II f II c(m) = + ma= If1 
a++k 
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Let f be an arbitrary, four times continuously differentiable function, 

which satisfies the conditions (1.5) on r . We set 

F, = F - f, WI = w 
Then (1.1) to (1.5) are reduced to the problem 

n2F, + IIs [wlr w,l + n2f = 0 

&2n2w1 - lwl, F,l - Iw,., fl - q = 0 

with homogeneous boundary conditions 

(3.5) 

(3.6) 

w1 (A) = WI,,, (A) = F, (A) = K,n (A> = 0 (A EU (3.7) 

We look upon problem (3.6) and (3.7) as a functional equation 

P WI = 0 (3.8) 

Here V E (F,, wl) and has been Introduced Into (3.5), and the operator P 

Is defined by the left-hand part of the system with’ (3.6). It Is easy to 

show thee the operator P acts from the space ,q upon the space Lo, 

For the presentation below it Is 

designations Into (2.1) 

(Pk = F - z&l), 

L e m m a 3.1 . The following 

n%k + '12 [(Pk, $kl = 0 (Ektl), 

convenient to Introduce the following 

$k = w - zkC2) (3.9) 

estimates* are valid for mr and t> 

e2n2$k - [(Pk, $kl - q = 0 (Ektl) (3.10) 

We will omit the detailed proof and will only note that to obtain the 
estimates (3.10) one has to substitute the values of (Pi, I#~ Into the left- 
hand part of (1.1) and make two separate estimates: one in the vicinity of 
the boundary, In the narrow strip D (p < 6) and the other Inside the region, 
i.e. in D -Db . The estimate (3.18) for the region D -D 

OP 
follows dlrect- 

ly from (2.3) If one remembers that functions hp and g;, the boundary- 
layer type, are equal to zero outside of the region Db . The estimate for 
the strip D Is carried out In exactly the same way as in the case of a 
circular pla!e [7] . 

Lemma 3.2. Let o(x,g), b(x,y) and c(x,k) be twice contlnuousiy 

differentiable functions In the region D . Then 

1) 1 [a, bl cdxdy = i ia, cl bda:& (3.11) 

If c (A) : b (A) = 0 (A : I’) 

2) 5 [a, bl adxdy = - s (b,a,2 + b,,a r2 - %$G a,) dx dy (3.12) 
D D 

If a (A) = 0 (A E I?). 

The proof of the lemma Is easily furnished in both cases through inte- 
gration by parts. 

* The condition f (8) = 0 (ek’l) means that I f (E) I d m 
i+1* 



Theorem 3.1. The positive solutlon of problem (1.6) and (1.7) 

is unique. 

Proof, We will take,the equations of a membrane in the form (3.6) 
;z; (3.7), setting E = 0 in (3.6) 

a We,, In (3.7). 
and neglecting the boundary condition 

Lelj us assume the existence of two solutions v(l' and v"'. Then we have 
P [\(I J- 0 and I'jV(")] 1-0, Now we subtract one equality f,om the other and 
multiply by the difference V(l)-V(z' 
and add. Applying Lemma 3.2 we obtain 

then we integrate.over the region n 

Bearing in mind that (1.9) is valid for both solutions F1" and F,("), we 
arrive at the conclusion that the second integral in (3.13)ls non-negative; 
hence pl('l z F*(e). 

The ore m 3.2. If problem (1.6) and (1.7) has the positive so- 

lution, then problem (1.1) to (1.5) has one and only one membrant solution. 

Proof. The uniqueness Is proved in exactly the same way as the 
uniqueness of the positive solution for a membrane. To prove the existence 
of the membrane solution one applies a theorem due to Kantorovlch [123 on 
the convergence of the Newton's method for the operator equations. The first 
approximation is taken as vk*-(((ph-- f,qk). As applied to this problem the 
theorem has the following form. 

Theorem. Let the operator P be defined in a sphere 

0 (11 v - v,* !j < I?) 

of the space fl and have a continuous second derivative In the closed sphere 
R. (Ii V - V,* /I < r) Moreover, let 

1) the linear operation I',= [I'Vk*(V)j-l exist 

2) rofP F,*l) ilH d 11 

3) II ro (P”(V)) IJH 4 K 

4)h==hq<'/z, r>ro=-(l- vl-ul)h-lq 

'J&en EqUatlon (3.8) has the solution V* to which the process converges. 
Here 

‘1 v -- Vki+ jlfl < PO (3.15) 

me conditions of the theorem are obviously satisfied if 

I/ P O',*) Ijl;., il (Fv,*i-l /P I( P,” /I B 54 (3.15) 

Let us show that (3.15) is fulfilled for sufficiently small E for any 

k75. From Lemna 3.1 we derive * 

j! I' (V,;+) Jj c Wsktl (3.2f;) 

l Here and everywhere henceforth m, are certain constants, independent of C. 



Asymptotic integration of B system of nonlinear WUatiOnS 417 

.In order to estimate the second factor in (3.15), let us consider the 
linear equation 

PvL*(8V)= f, 6V SE (6F, 6w), f z (fl, fz) (3.17) 

P,;* (0’) E (A2 (W) + [qk, 6~1, 9A2 (6~1) - [qlk, 6F] - [rp,: 6~1) 

6F Ir = (6F), 11’ = 6w Ir = (tiw),, Ir = 0 (3.18) 

f E L, p,;* E [II + L?] 

From (3.17j and (3.18) we obtain 

c 
(A(8F)Y dxdy f e2 

b 
\ (n(sw))’ dx dy + \ h’k, xx (6W,,)2 -f ‘p/q vu (8W,)’ - 

b 

- 2q,, x,~wx~w,I dx dy = c (f8’F + f&J) dx dy (3.19) 
b 

Let us now prove that for sufficiently small E the last Integral in 
(3.17) 1s positive. To show that we look at the second derivatives (PkSxx, 

qk# vu’ (Pk, xy’ For instance, for ‘Pk.s we have 

k+2 k+2 

‘pk. xx = F,, x.x + x %, xx + x %, X.1: 
s=1 S=O 

Bearing In mind that h, = h, = Oand .Ghz,x, = O(E) (see (2.18)), we easily 
obtain 

qk, xx = F,, xx + o (d (3.20) 

In the same manner we prove the validity of the relations 

'pk. w = F I), uy -+ 0 (41 ‘Pk. ry = F,, XJJ + o (d (3.21 

Now let us note that from (1.9) follows directly the estimate 

c (F I Vu Pdx dz! h > 0) 0.23 
b 

,,, ,..uy2 f F,, yv~r2- 2F,, x!,~N~J dx dy >, m2 c 
b 

Finally, by means of (3.20) to (3.22) for sufficiently small c 
(3.2?,) 

s [%c, ~~'(8~~)~ + (Pk, !,?J (8~u,~)‘) - h&., sl,6fus8”$ dx dy > nz3 
c 1 v6w I2 dz dy, n13 > 0 

D b 

Now, from (3.19), using (3.23), we derive 

II a (@I Iii,_ d '724 II f iI&? I/ n (6~) III,? < In4 1 F. II f I!I., (3.24) 

Let us also note the following inequalities for 'p* and $1, which easily 
follow from (3.20), (3.21) and (2.16) 

II cp,k I&) < mj, II 4+ 4,(Z) \ < me / E (3.25) 

Furthermore, from (3.17) we obtain the estimates 

II A2 (W I/L,z d 2 (11 /I ~~~~~ +- 11 [8ru, $kl 11~~~) (3.26) 

11 A2 (84 ilr,,' < 3 / s4 (iI f:! ljI,;J i- II [6=%, qkl II,.,? -t II [6J’, VJ III,,*) (3.17) 

Hence, using the results from [17] and the estimates (3.24), (3.25) we 
find 

/I d F jJH c; n,, ! e? ji f [‘&. j! 6w jlH “: ‘)I8 / 9 II f II& (3.28) 
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From (3.17) and (3.28) It Is easy to show that the operator Pv,, Is 
Invertible and that the following estimate is valid 

II P”,:,-l II < “g / ES (3.29) 

To form an estimate of IIP," (I we consider the bilinear form 

P,” (6V) (&vy = ([b, &WI, - [bw, fj,Fl ‘- [&,w, WI) 
Using the Insertion theorems [18] we derive 

1) P,” (6V) (8,V) l/L,,2 < ml0 II w llH2 II hV Ill? 
and hence follows the estimate 

II P,” II < ‘nil (3.30) 

From (3.161, (3.29) and (3.30) we obtain 

II p w,*1 /IL* II (P”,k’ II2 II P,” II G %2E k-5 < v2 (3.31) 

provided that k > 5 and E Is sufficiently small (0 < c < cl). 

And so the conditions of the Kantorovlch theorem are fulfilled. Therefore, 
Equation (3.8), equivalent to the problem (1.1) to (1.6), has the solution 
v* f (Fl*,wl*) f 
quantity 

or which the estimates (3.14) are valid. We compute the 
r0 by means of (3.16) and (3.29) 

11 v* - v,* 1) < q3Ek-2 (k > 5) (3.32) 

Due to the Insertion theorems [18] we have from (3.32) 

I/ zk(i) iic(l) < m14Ek-2 (k > 5, i = 1, 2, 1 = 0, 1, 2) (3.33) 

Finally, from (3.33) for 1 = 2, f, = 1 , using (3.20), (3.21) we obtain 

FXx = F,, xx + 0 (s), F,, = J',, yy + 0 (s), FXll = F,, ry + 0 (E) (3.34) 

It follows from here that the Inequality (1.9) Is valid. This means that 
the solution V* constructed above Is a membrane solution. Theorem 3.2 Is 
thus proved. Along with the proof of Theorem 3.2 the following corollaries 
have been arrived at. 

Theorem 3.3. For the membrane solution of problem (1.1) to (1.6) 
the valid asymptotic representations are given by (2.1) and the remainders 
allow the following estimates 

II z/p) II ktl 
c(l) < ml58 

II.zk(‘) Ilctl) < md k+l 

(k = 0, 1, 2, . . ., 1 = 0, 1, 2) 

(k = 0, 1, . . .) 

(k = 1, 2, . . .) 

(3.35) 

(3.36) 

(3.37) 

The estimates (3.35) to (3.37) follow directly from (3.33) by means of 
the triangle inequfllty, and bearing In mind that each differentaclon of 
functions h, , 9, of the boundary-layer type lowers their order In E by 
one. 

4. On thr manbrurr l urtionr. The existence theorems for the positive 
solutions of problem (1. 8 ),(1.7) will be obtained below for certain cases. 

1. Consider a circular-symmetrically loaded membrane. Let the x-axis 
coincide with the direction of the radius vector for 'p = 0 . Then, taking 
advantage of the radial symmetry and ellmlnatlng the function w,,,~ from 
(1.6) we obtain Equation 

d 1 d 
TJp2 2- <co, -‘drydr’U=~vp-7 * cp (r) = \ 4 (t) t dt (4.1) 

I.=0 
;I 
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Here u = ~c,~ Is the radial force. The boundary conditions are deter- 
mined by the manner In which the membrane Is supported along the contour. 
We designate the stresses in the middle surface acting along the radius and 
along the arc by 0, and 0 ,respectively. The latter are expressed in terms 
of the stress function F, 'by Formulas 

Here (1.9) 

(T= 4 = Fo,rr 

becomes the inequality 

$b$,> 0 

(t = 0) (4.2) 

(4.3) 

a) Let the membrane be rigidly built-in along the contour 

dv / dr - (Y / r)” lrE1 = 0 

T h e o r e m 4.1 . The problem (4.1) 
lutlon. 

(0 < y < 0.5) 

and (4.4) has the positive so- 

Proof. The existence of the solution of problem (4.1), (4.4) has 
been provedln [7]. It remains to prove (4.3). To that end we transfer from 
(SA), (4.4) to an equivalent Integral equation 

ror = v = J (1, 1) 

The following designation has been Introduced here 
r S 

Differentiating (4.5) with respect to r we obtain 
1 

(Jo = - Y& rm2 J (r, I) + G s ‘p2 dg + 
r Sv” 2 ‘(TV, J (I,11 

(4.5) 

(4.6) 

In the Interval [Oil] Expression @ (r)=- l/z r_2J(r, 1) Is a decreasing 
function In r , since CD (0) = 0 and 

SD / ar = rps J (r, r) 

Therefore, the minimum value of @(r) Is attained at point r = 1 . 
Furthermore, obviously 

I @ (4 t d I Q (1) I G 2 (1 _ v) I+’ Jl,l) (0 <v <0.5) (4.7) 

Finally, from (4.6) with the help of (4.7) we find that o,>O,if r E (0, 11. 
It is evident that 0, Is positive and the condition (4.3) Is fulfilled. 

Corollary 1. The symmetrical solution of the problem of large 
deflections of a circular-symmetrically loaded plate, rigidly built-in along 
the contour. Is a membrane solution. (This follows from Theorem 3.2). It 
has been proved In [lo] that In the case of a circular-symmetrically loaded 
plate, rigidly built-in along the contour, for sufficiently large q(r) a 
nonsymmetrical solution appears along with the symmetr,lcal one. From the 
corollary 1 and Theorem 3.2 follows. 

Corollary 2. The nonsymmetrical solution will not be a mem- 
brane solution. 

b) Let the membrane be subjected to a uniform normal tension on the con- 

tour 
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In the case when T = 0 , the contour Is free of stresses. 

Theorem 4.2. Let the following inequality be fulfilled 

I’> 

Then problem (4.1), (4.8) has a unique positive solution. 

The existence and unlqueness.of solution of problem (4.1), 
proved in [7]. Let us fir-A when condition (4.3) is valid. 

Yor that we transfer to an equivalent integral equation 

Proof. 
(4.8) have been 

T, = max 
O’rKl 

1 

ro, =: (j + Y(t)$+Tr c (Y(t) =+ydr) (4.10) e 
P 1, 

Differentiating (4.9) with respect to F , we obta$n 
I 

% = -$-- \ Y (t) -$ -&Y (r) + 7 

P 

(4.11) 

Let 'T> 0 . Then from (4.10) we find that v>l'r. Utilizing this we find 
from (4.11) that lfr/a@(r) 6 T3r”. then 0, is positive. Therefore, when 
T'T,, condition (4.3) is fulfilled and the solution Is positive. 

Corollary 1. 
(4.8) will not be positive. 

If 0 < l'< To, the solution of problem (4.1), 

Corollary 2. If T> To. then the symmetrical solution for a 
circular symmetrically-loaded plate subjected to the tension T on the con- 
tour will be a membrane solution. If, however, 0 < T< To, the symmertical 
solution will not be a membrane one. 

But If we restrict ourselves to the set of functions which depend on F 
only and if we consider a solution which satisfies the condition c,.>O, 
to be the membrane solution, then it can be shown that the symmetrlcal so- 
lution will be the membrane one for anyT> 0[7]. The results given In [7] 
and other, somewhat more exact ones, can be obtained by means of Theorems 
3.2 and 3.3 which were proved for the one-dimensional case In the lnvestl- 
gation of the asymptotic expansions of the solutions of symmetrically loaded 
shells of revolution [13]. In this connection It Is important to point out 
the following fact. The justification of validity of the asymptotic expan- 
sion is not related to the method b which it was constructed. The fulflll- 
ment of the estimates (3.16), (3.29 and (3.15) turns out to be the only 
essential matter. 

2. Let the following stresses be given on the boundary of a membrane of 

arbitrary shape 

F,,-: jl’ = (I cos2 8 -+- 6 sill't), F u, ,I 5 j 1% x ‘/? (h - a) Sill 20 (4.12) 
(rl > 0, b > 0) 

Here 0 = e(~) is the angle which the normal n forms with the x-axis. 

In the case when a = b = a , Problem (1:l) to (1.4) and (4.12) becomes 

problem (1.1) to (1.4) and (1.8), which was Investigated by Fife In 181. 

Let us transform the Initial equations. We set 
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Here 

a, = c&J-“‘” > 0, b, = b,--‘:, > 0, (5 = II2 (a* + b2; 
w = W@ 4, p = qo-:z, El = &&? (4.14) 

Then (1.6) and (4.12) becomes problem 

A*F + ‘I2 [w, WI = 0, - ~lwx - bp,!, - M’, WI - p = 0 (4.15) 

w (A) = F (A) = F,, (A) = 0, (.‘lEry (4.16) 

Repeating the argument of [83 It is easy to prove the existence of so- 

lutions of problem (4.15), (4.16) for sufficiently small p(x,y). The proof 

is obtained by utlllzlng the spaces B’*” of functions J’ , determined in I’ 

with continuous derivatives of order 1 , which uniformly satisfy HSlder’s 

condition with the exponent a(0 < a < 1) along the entire contour with the 

norm 

II f II I ta = II f I/ BI sup I D ‘f I + SUP 
j d I (ivl) - D1 

.a = 
i (Iv,) I 

__- (4.17) 
lN1-NNaja 

It Is assumed here that N, = (c&, n), N, = (cp2, n) and the uppr:’ bound 

Is taken over all points N, #lye from 7 and over all de1,ivati.c: sf 

order 1 . 

T h e o r e m 4.3 . Let /)~jj~+~ <pow Then, if p0 Is sufficiently 

small, there exists a solution of problem (4.15), (4.16), such that 

I/ F II 1+4+a + II 10 II ~+z+a < /I P /I I-La’..! (4.18) 

Proof*. Let us define the sequence F‘, ml by formulas 

F0 zzz w0 = 0 

n2Fi = _ lj2 [wi-l,wi-l~ (i = 1, 2, . . .) (4.19) 

- Lw,; - bIzcU; = p (z, Y) + wl, 26 
i-1 1 (4.20) 

wi (A) = Fi (A) = Fni (A) = 0 (4.21) 

Furthermore, we introduce the designations 

Ai = II Fi Il~+a+a f II wi Ill+z+cr (4.22) 

By means of arguments of [83 and also the theorem 7.3 of [ 191, it can be 
shown that 

‘$ <Cl (4-l +llPIJI+a) (4.23) 

Then we choose the constant C, such that 

Pa ‘< ‘IrC,” 

Now, it follows from (4.23) and (4.24) that 

(4.24) 

“i GlP II;‘;, (i = 1, 2, . . .) (4.25) 

In order to show that the sequences F1, WI converge to tte solution, we 
determine the differences 

* For a, = b, = 1 Theorem 4.3 was proved In [ 8] (Theorem 2). 
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fj$ _ Fi _ Fi-l 
9 

61w = J _ J-1 (4.26) 

Now we replace the Index t by t - 1 In Equations (4.19) to (4.21) and 
subtract the resulting equations from the original ones. 
from [19] and (4.25) we obtain 

Using Theorem 7.3 

II hiF !,+*+a + II& Il~+2+a <G II P ll:+a ( II C1 F lll+4+a + II @w k+p+a) (4.27) 

It follows from (4.27) that in order for the sequence to converge to the 
solution within the corresponding norms, 
fulfilled 

the following condition must be 

Gv-/p,<l (4.28) 

From this and from (4.24) It Is clear that if p,, Is sufficiently small 
the solution of the problem (4.15), (4.16) exists and (4.18) Is fulfilled. 

The following theorem results from the estimate (4.18). 

Theorem 4.4. If v/p, < d = min (V.pl, l/&J, then the solution 

of problem (1.6), (4.12) will be positive. 

Proof . It Is easy to derive the following Inequalities from (4.18) 

IF,, 1 <d> IF,,I<d, IF,,l<d (4 29) 

Hence, bearing (4.13) In mind, we obtain for ~~ 

F, ,>.%ao 'i'* , Fo,,,>'lz bi", FOJX F 0,YY - %‘i, > 0 (4.30) 

In the case when o = b = o , we have to set p0 = $ . 
Corollary . Ifjl~$!;, < d, then the solution of problem (1.1) 

to (1.4) and (4.12) Is the membrane solution. 

3. As an example let us consider a circular membrane subjected on the 

contour to the nonsymmetrlcal tensile stresses of the form 

CrlrE1 = a + bsii?cp, z 1 r=l = 0 (4.31) 

Here o and b are constants which satisfy the condition a > 0 if 

I,> Oand a>lbi>O,if b< 0. 

Equations (1.6) and (4.31) can be reduced to the form 

A2F + V2 [w, WI = 0, -Lw-[F,wl-q=O 

w Irzl = F / j-z1 = dF / dr 1 rrl = 0 

(4.32) 

(4.33) 

where L Is the elliptic operator. This can be done by setting 

F = F, - l12ar2 - ll,r2b (1 + cos 29 - ‘l,r2 cos 2xp), w = w. 

Now, applying the arguments of Theorems 4.3 and 4.4 to (4.32) and (4.33) 

we establish the following Theorem. 

Theorem 4.5 . There exists a constant p0 , such that If 

llQlll+s < PIJ, the solution of problem (1.6), (4.31) Is positive. 
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In the general case of the problem (1.6), (1.7) the solution is not posi- 
tive. As an example consider a circular membrane subjected at the ends of a 
diameter to two radial concentrated loads p , whereas the transverse loads 
are absent. Then (1.6) transfers into Equation 

A2Fc, =0 

The formulas foro,,cp and 7 , as well as the graphs of these functions 
plotted versus r and m , are given in [21](p.612) for this particular 
case. It Is clear from the graphs that c, and c? change their signs and 
hence do not possess the property of being positive. The statement of the 
corollary 1 of Theorem 4.2 may serve as another example. 

The author expresses gratitude to V.I. Iudovlch for his great help in 
this work. 
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